

		II B. Tech I Semester Regular Examinations, Feb/March - 2022 SWITCHINNG THEORY AND LOGIC DESIGN (Com to ECE, EIE, ECT)				
Time: 3 hours Max. Marks:						
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks				
1	a)	Given the 8-bit data word 01011011, generate the 12 bit composite word for the	[6M]			
		Hamming code that corrects and detects single errors.				
	b)	Carry out BCD subtraction for $(57) - (50)$ using 10's complement method.	[4M]			
	c)	Express the decimal 324 in Gray code form.	[4M]			
		Or				
2	a)	Simplify the following expression $Y=(A+B)(A+C')(B'+C')$ and implement using NAND gates.	[6M]			
	b)	Draw the pin diagram and obtain truth table for the following: (i) IC 7400 (ii) IC 7408	[8M]			
3	a)	Minimize the expression using Quine-McCluskey method $Y = \overline{A} B C D + \overline{A} B \overline{C} D + A B \overline{C} \overline{D} + A B \overline{C} D + A \overline{B} \overline{C} D + \overline{A} \overline{B} C D$	[10M]			
	b)	What are the advantages and disadvantages of K-maps?	[4M]			
		Or				
4	a)	Design and implement BCD to Excess-3 code converter.	[10M]			
	b)	Draw and explain the operation of a full adder circuit using two half adder circuits.	[4M]			
5	a)	Using 8:1 multiplexer realize the Boolean function: T= $f(w,x,y,z) = \Sigma(0,1,2,4,5,7,8,9,12,13)$	[7M]			
	b)	Design an octal to binary encoder.	[7M]			
		Or				
6	a)	Design a BCD to excess-3 code converter using PAL.	[10M]			
	b)	Compare the three combinational PLDs – PROM, PLA and PAL.	[4M]			
7	a)	Draw the logic diagram of a parallel-in, Parallel-out shift register and explain its operation.	[6M]			
	b)	Explain the working of a master-slave JK flip flop and state its advantages.	[8M]			
		Or				
8	a)	Design a counter with the following repeated binary sequence: 0,1,2,4,6. Use D flip-flops.	[8M]			
	b)	Write short notes on the following:	[6M]			

- b) Write short notes on the following:
 (i) IC 7474
 (ii) IC 7493

Code No:	R2021042
Couc 110.	112021012

[6M] 9 a) Explain the capabilities and limitations of finite state machines. [8M]

R20

b) Explain about state diagrams & state tables.

Or

10 a) Convert the following Mealy machine into equivalent Moore machine. Draw the [12M] state transition diagrams for both.

	N.S					
P.S	А		В	В		
	state	o/p	state	o/p		
Q1	Q1	1	Q2	0		
Q2	Q4	1	Q4	1		
Q3	Q2	1	Q3	1		
Q4	Q3	0	Q1	1		

b) When are two states said to be equivalent states?

[2M]